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Abstract

An improved version of the immersed boundary (IB) method is developed for simulating flexible filaments in a uniform
flow. The proposed IB method is based on an efficient Navier—Stokes solver adopting the fractional step method and a
staggered Cartesian grid system. The fluid motion defined on an Eulerian grid and the filament motion defined on a
Lagrangian grid are independently solved and their interaction force is explicitly calculated using a feedback law. A direct
numerical method is developed to calculate the filament motion under the constraint of inextensibility. When applied to the
case of a swinging filament analogous to a rope pendulum, the proposed method gave results very similar to those of the
analytical solution derived using the perturbation method. For a flexible filament flapping in a uniform flow, the mecha-
nism by which small vortex processions are produced was investigated. The bistable property of the system was observed
by altering the filament length, and the effects of the boundary condition at the fixed end (simply supported or clamped)
were studied. For two side-by-side filaments in a uniform flow, both in-phase flapping and out-of-phase flapping were
reproduced in the present simulations. A repulsive force was included in the formulation to handle collisions between
the free ends of side-by-side filaments undergoing out-of-phase flapping.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Systems involving flexible bodies interacting with a surrounding fluid flow are commonplace — for example
flapping flags and swimming fishes — and are becoming increasingly prevalent in biological engineering appli-
cations. Such phenomena are challenging to model numerically on account of their complex geometries and
freely moving boundaries, which give rise to complicated fluid dynamics. In these systems, the flexible body
acts on the surrounding fluid, forcing it to move with the moving boundary. On the other hand, the fluid exerts
forces on the flexible body through pressure differences and viscous shear stresses. Together, these interactions
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between the fluid and the flexible-body can give rise to self-sustained oscillations such as the flapping of a flag
[1-5].

Zhang et al. [1] visualized the motion of flexible filaments in a flowing soap film as a two-dimensional model
of the flag-in-the-wind problem. They found two distinct stable states for a single filament (see Fig. 1(a)): the
stretched-straight state and the self-sustained flapping state. For two side-by-side filaments (see Fig. 1(b)), four
dynamical states were observed, among which in-phase flapping and out-of-phase flapping can be selected by
altering the interfilament distance. This experiment inspired numerical simulations on the interaction between
flexible filaments and viscous fluid flow. Peskin and co-workers [6-8] simulated both a filament and two side-
by-side filaments for comparison with Zhang et al.’s experiment using a new version of the immersed bound-
ary (IB) method, which can handle the mass of the filament. They found that the filament mass plays a sig-
nificant role in the dynamics of flapping. Yu [9] extended the distributed Lagrangian multiplier/fictitious
domain formulation [10] to deal with the interactions between a fluid and a flexible body. Farnell et al. [11]
developed another method, in which the motion of a filament is formulated by Lagrange mechanics by regard-
ing the filament as an ‘N-tuple pendulum’ and the hydrodynamic force acting on the filament was approxi-
mated by the pressure difference across the filament. Systems of flexible fibers suspended in viscous flows,
which are important in the paper and pulp industries, were simulated numerically by Tornberg and Shelley
[12] and Qi [13]. In fact, previous results show that even a filament alone without ambient fluid flow (also
termed as a chain or string when the bending rigidity is neglected) gives rise to complex dynamics. Many inter-
esting studies have been made of filament dynamics, including theoretical, numerical and experimental works
[14-16].

Recently, the IB method for simulating interactions between fluids and structures has received much atten-
tion due to its greatly simplified grid generation requirements [17]. Specifically, by introducing a momentum
forcing into the Navier—Stokes (N-S) equations to mimic the no-slip condition, the N-S solvers based on a
Cartesian grid system can be easily applied to complex flow geometries without the need for a boundary-con-
forming grid. More importantly, it is not necessary to regenerate or deform the grid to account for moving
boundaries. The IB method developed by Peskin [18] turns out to be an efficient method for simulating
fluid—structure interactions, especially the interactions between fluids and flexible bodies, which are typically
encountered in biofluid mechanics [19]. The fluid motion is described by Eulerian variables defined on a fixed
Cartesian mesh, while the IB motion is described by Lagrangian variables defined on a freely moving mesh.
The Eulerian and Lagrangian variables are connected by a smoothed approximation of the Dirac delta func-
tion. The Eulerian velocities are interpolated on the IB and the Lagrangian forcing calculated on the IB
spreads to the Eulerian grid. For immersed elastic boundaries, the Lagrangian forcing is just the elastic force,
which can be derived by the principle of virtual work or a constitutive law such as Hooke’s law [19]. For rigid
boundaries, however, the constitutive law for elastic boundaries is not generally well posed. Hence, a feedback
control of the velocity along rigid boundaries was proposed by Goldstein et al. [20] and others [21,22]. Lai and
Peskin [23] used a stiff spring restoring force to force the IB to attach to the equilibrium or prescribed posi-
tions. A difference between the scheme of Goldstein and that of Lai and Peskin is that the boundary points are
exactly prescribed in the former scheme, but allowed to move slightly from their equilibrium positions in the
latter.
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Fig. 1. Schematic diagram of the computational configuration and coordinate systems: (a) a filament in a uniform flow; (b) two side-by-
side filaments in a uniform flow.
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Peskin [19] showed that the equations of motion of an incompressible elastic material can be written in
the same form as those of the incompressible fluid; hence, the governing equations of the whole compu-
tational domain are the N-S equations with a momentum forcing, which are non-zero only near the
IB. To achieve massless (or neutrally buoyant) elastic boundaries, the only modification of the original
N-S solver required is the addition of the momentum forcing to the right hand side of the momentum
equations. However, more complications are encountered when the boundaries have mass since the density
is not uniform across the whole computational domain. Moreover, the efficient fast Fourier transformation
(FFT) method is no longer applicable for this system. Zhu and Peskin [6], in work aimed at simulating
flexible filaments in a fluid to compare the simulated behavior with the results of Zhang et al.’s experiment
[1], handled this problem by spreading the mass of the IB to the near Eulerian grid points in the same
manner as the momentum forcing. The multigrid method was used to solve the discretized equations,
and iterations were needed at each time step, which substantially increased the computation time. Kim
and Peskin [8] proposed a different formulation referred to as the penalty IB (pIB) method in order to
retain the use of the FFT. In the pIB method, the mass is added by introducing a twin boundary with
the needed mass that does not directly interact with the fluid but rather is connected to its twin massless
boundary by a stiff spring. In both papers, they treated the filament to be elastic and used a constant
stretching coefficient. To approximate the inextensibility of the filament, a large stretching coefficient
should be chosen in computation.

In the present study, an improved version of the IB method is proposed to handle the mass of a fila-
ment. In the proposed method, fluid motion is governed by the N-S equations and a momentum forcing is
added to induce the fluid to move at the same velocity as the IB. A flexible inextensible filament model is
described by another set of equations with an additional momentum forcing which is the result of the
interaction with the surrounding fluid. The Eulerian fluid motion and the Lagrangian IB motion are solved
independently and their interaction force is calculated explicitly using a feedback law [20]. The primary aim
is to efficiently simulate the interaction between flexible filaments and a viscous fluid flow. Although some
previous studies of such systems have been made using the IB method [6-8] and other methods [9,11],
many issues remain unresolved. The inextensibility condition of the filament was not strictly satisfied in
the IB method used in these previous works. Although a stable flapping motion was obtained, the small
vortex procession observed experimentally was not reproduced in the numerical studies. Moreover, the
effect of the boundary condition at the fixed end of the filament (simply supported or clamped) was not
fully explored. Finally, collisions between adjacent filaments were not considered. All of these issues are
resolved in the present method. In addition, the motion of a single filament without ambient fluid under
a gravitational force, analogous to a rope pendulum, is simulated and its analytical solution is derived for
validation.

2. Problem formulation

A schematic diagram of the computational configuration and coordinate systems is shown in Fig. 1. In
Fig. 1(a), a flexible filament with one end fixed and the other free is subjected to a uniform flow. The fixed
end of the filament coincides with the origin of the Eulerian coordinate system. For convenience, the Lagrang-
ian coordinate (s) along the filament starts at the free end P and ends at the fixed end Q. It should be pointed
out that, for the numerical simulation, it is equivalent for the Lagrangian coordinate to start at P or to start at
Q. The direction of the gravity force is denoted in Fig. 1. For the case of two side-by-side filaments, denoted by
PQ and P'Q’ in Fig. 1(b), the fixed ends are located at y = d/2 and —d/2, respectively. Each filament has its
own Lagrangian coordinate system.

The incompressible viscous fluid flow is governed by the N-S equations and the continuity equation

0
p0<al:+u~Vu)Vp+uV2u+f, (1)
V-u=0, (2)

where u = (u,v) is the velocity vector, p is the pressure, pq is the fluid density, u is the dynamic viscosity, and
f=(fs.f,) is the momentum forcing applied to enforce the no-slip boundary condition along the IB.
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The flexible filaments used in the present study are massive and inextensible. The governing equations for a
filament are written in a Lagrangian form. The motion equations are

X 0/ 00X\ o/ X
CA_S(rd) 2 F+F.,
P oe 6s< as> as2( az>+p‘g + 3)

where s is the arclength, X = (X(s, 1), Y(s,?)) is the position, T is the tension force along the filament axis, 7 is
the bending rigidity, F is the Lagrangian forcing exerted on the filament by the surrounding fluid, and F, de-
notes the repulsive force between adjacent filaments in the case of side-by-side filaments. In Eq. (3), p; denotes
the density difference between the filament and the surrounding fluid [9,24]. Since Eq. (3) is one-dimensional in
space, the actual filament line density is p; + poA4, where 4 denotes the sectional area of the filament. We can
see that p; = 0 represents the neutrally buoyant case. The inextensibility condition [12,14,16] is expressed by

GX 0X
ds Os

Egs. (1)—(4) can be non-dimensionalized by introducing the following characteristic scales: the reference fil-
ament length L, for length, the far-field velocity U, for velocity, L,/U,, for time, poUiO for pressure p,
poU% /L, for the momentum forcing f, p,U? /L, for the Lagrangian forcing F and the repulsive force F,,
p,U% for the tension force T, and p,U* L? for the bending rigidity y. For convenience, in the following,
the dimensionless quantities are written in the same form as their dimensional counterparts. Egs. (1) and
(3) then become, respectively,

u

— 1. 4)

e Vu——Vp-i- V2u+f, (5)
’X 0 [ 0X 62 .

e =y 2 —F+F,, 6
o as( 65) as2< 62>+rg + (6)

where Re = poU. L/, Fr = gL,/U?,, and g = |g|. Egs. (2) and (4) keep the same forms after non-dimension-
alization. Note that different characteristic densities, po and p;, are used for Egs. (1) and (3), respectively. This
difference should be accounted for when transforming between the Eulerian and Lagrangian forcings. For
comparison, the actual filament length L (after scaling with the reference value L,) may be set to be different
from 1.

In the present study, the tension force T is determined by the constraint of inextensibility and is a function
of s and ¢, while the bending rigidity y is assumed to be constant. From Egs. (4) and (6), the Poisson equation
for T is derived as

oX o /_0X\ 19 [oX X\ X X 00X 0

= (T )= (= ) - = == _—(Fy+ F.— F), 7

3 as2< 6s> 2@t2<as 6s> ords aras @ asiet ) ™
where F, = — % (y@ZX /0s?) denotes the bending force. The first term on the right hand side of Eq. (7) is zero
theoretically. However, numerical errors of the inextensibility constraint are introduced in the computation
and will not be corrected if this term is dropped, as will be explained in detail in the next section. At the free
end (s =0), we have
GD.¢ o’X

0,0

Os? = (0,0), o3
At the fixed end (s = L), two types of boundary conditions are considered. One is the simply supported con-
dition (denoted BC! hereafter),

T =0, = (0,0). 8)

X
X=Xy, —=(0,0). 9
0 5z =(0,0) ©)
The other is the clamped or build-in supported condition (BC2),
X=X, X_(-10. (10)

3
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As shown in Fig. 1, X, is located at (0,0) for a single filament, while X, = (0,d/2) and (0, —d/2) for two side-
by-side filaments, respectively.
The interaction force between the fluid and the IB can be calculated by the feedback law [20]

Foc/t(UibU)dt’Jrﬁ(U[;,U), (11)

where o and f are large negative free constants, Uy, is the fluid velocity obtained by interpolation at the IB, and
U is the velocity of the filament expressed by U = dX/dz. Eq. (11) implies that the adjacent fluid points are
linked with the IB by a set of identical stiff springs with damping.

The transformation between the Eulerian and Lagrangian variables can be realized by the Dirac delta func-
tion [19]. The interpolation of velocity is expressed as

Uy(s,t) = / u(x,0)0(X(s,1) — x)dx. (12)
o
Spreading of the Lagrangian forcing to the nearby grid points is expressed as
f(x,0) = p/F(s,t)é(x—X(s,t))ds7 (13)
r

where p = p1/(poL,) comes from non-dimensionalization. In Eq. (13), the Dirac delta function is two-dimen-
sional but there is only one integral ds. The present definition of p becomes p = p;/(poA4) if we use the integral
dV = (A/L,)ds instead of ds. However, since the sectional area A4 is not definitely defined, p = pi/(poL,) is used
in the present study [25]. The combination of Egs. (11) and (13) means that the velocities at the nearby grid
points are forced to move with the IB. The jump conditions in fluid stresses across the IB can be derived from
Egs. (1) and (13) [26]. Peskin and co-workers [6-8] used a different formulation, in which the filament is
approximated by a band of delta function and the stretching and bending forces are spread out the nearby
grid points. In the present formulation, the motion of the IB can be solved independently and the inextensi-
bility condition can be satisfied.

In the present study, a strategy is introduced for handling collisions between two side-by-side filaments flap-
ping out of phase in a uniform flow. Due to the fluid lubrication, the two filaments do not actually collide but
rather interact repulsively via the intervening fluid when they are in close proximity. In the numerical simu-
lation, an artificial repulsive force is activated at close range, as proposed by Glowinski et al. [10]. For flexible
filaments, this short-range repulsive force can be formulated using the Dirac delta function

X-X
(s, 1) / (X (s,t) — X'(s, t))|X X,ld , (14)

where X(s,7) and X'(s', ) are the position vectors along the two filaments, respectively. After discretization, the
forcing range is the support of the smoothed approximation of the Dirac delta function.

3. Numerical method
3.1. Discretization of the filament governing equations

3.1.1. The tension and bending forces

A staggered grid is used in the Lagrangian coordinate system, as shown in Fig. 2, with the tension force
defined on the interfaces and the other variables defined on the nodes. The indices start from the free end
(i=0) and end at the fixed end (i = N). Let D,, D,, and Dy denote the difference approximation to the

0 1 N-1 N
@ t @ t @ + @ t O
12 3/2 N-1/2

X,
T

Fig. 2. Schematic diagram of the Lagrangian coordinate system for a flexible filament.
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first-, second- and third-order derivatives of the arclength s, respectively. Specifically, for an arbitrary variable

?,

DV = (d(s+ As/2) — §(s — As/2))/As, (15)
DI ¢ = (§(s + As) — p(s))/As, (16)
D7 ¢ = (9(s) — bls — As))/As (17)

denote the center, downwind and upwind difference approximations, respectively. Thus, the second-order cen-
tral difference approximation is expressed as

DID; ¢ = (d(s + As) = 2¢(s) + d(s — As))/As”. (18)

The same rules apply for the time ¢.
The tension force term in Eq. (6) is discretized as

Ti+1/2(D?X)i+1/z - Tifl/z(DSX)H/z

[DS(TDSX)L = [D?(TD?X)]: = A ’ 1121 . 7N_ 1 (19)
e s
and the bending force term is discretized as
DssX i -2 DssX i DSSX i—

(F), =~ D, (3D, X)), = — LX) (Asz W OXr 1N, (20)
where

o.x),= {7 - @)

S (DD X)), i=1,2,...,N — 1,

and two boundary condition types (Egs. (9) and (10)) at the fixed end are accounted for
0, simply supported,
(DX)y =13 1 o o
[(—=1,0) = (DsX)y_]/0.5As,  clamped,
where (DX)y = (—1,0) is used according to Eq. (10).

At the free end (i =0), the tension and bending force terms in Eq. (6) are discretized using Eq. (8),
yielding

. (TDSX)I/Z — (ID,X), _ T1/2(D8X)1/2

D,(TD,X)], = = , 2
— + _ (DSSSX)] — (DsssX)o — . (D:ers_X)z — (D:D;X)l
(Fo)y = =7[D; (DsssX)]y = =7 As =-y A ~ (24)
At the fixed end (i = N), we have 9’X/0r> =0 and F. =0, and hence
DX, - DX = (F =P 5)
N
3.1.2. Time marching scheme
Now, the discretization of Eq. (6) can be summarized as
X’-1+1 _2X" Xr_tfl
LSS D (1 DX+ (Fy), + Fr§ —Fl 4+ (F)], i=0,1,2,...N, (26)

where the superscript n denotes the nth time step, Az denotes the time increment, and the boundary conditions
(Egs. (23)—(25)) should be accounted for at i=0 and i= N. At the fixed end, Eq. (25) is equivalent to
(X3 —2X75 + X5 ') /A = 0. The bending force terms F; and F are explicitly calculated in the form of
F; = F,(2X" — X"") and F: = F.(2X" — X""), respectively. The tension force term is implicitly treated,
while 7"""2 is the tension force at the intermediate time step and is obtained by solving Eq. (7).
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The first term on the right hand side of Eq. (7) is discretized as

1-2(D°X - D°X)" + (D°X - D’ Xx)""
2A7

1
5D/ D, (DIX" - DIX") =

; (7)

In the above equation, we used the inextensibility condition (D,X - D,X)""' = 1. The numerical errors intro-
duced in previous time steps, i.e. (D,X - D,X)" and (D,X - D,X)""!, are penalized. The discretized form of
Eq. (7) can be written as

(D?X*)H—I/Z ’ [Dg(Dx(T"H/zDSX*))]i+1/2
1 — n n n n * * " £
= EDtJrDt (D?X 'D?X )i+1/2 - (D?U 'DSU )i+1/2 - (D?X )i+1/2 ’ [DS(Fb —F' + FC)]i+1/27
i=0,1,2,...,N—1, (28)

where X* = 2X" — X"~!, which is the solution of Eq. (26) by setting the right hand side to be zero. The dis-
cretization of the tension and bending forces (Egs. (19) and (20)) are applied in Eq. (28), and the boundary
conditions (Eqgs. (23)—(25)) are applied for i =0 and i = N — 1. Solution of Eq. (28) gives the tension force
at the intermediate time step, T2 which is then used as an inextensibility constraint to obtain X! from
Eq. (26). No iteration is needed for time advancement at each time step. In practice, the inextensibility con-
dition is well satisfied and use of the predicted position X* =2X" — X"~! instead of X" reduces the error
further.

3.1.3. The interaction and repulsive forces
In Egs. (26) and (28), the interaction force term is calculated explicitly, i.e.,

—ocz —UNd! + B((Uy)! = UM, i=0,1,2,...,N, (29)

where U/ = (X’. —Xffl)/At j=1,2,...,nand
= > (X —x)l’, i=0,1,2,...,N, j=12,..n (30)
Xmi€&p

In the above equation, / denotes the mesh size and, in the present simulations, a mesh of uniform size is dis-
tributed around the IB in the x- and y-directions, i.e. # = Ax = Ay. gj, is the support of the smoothed delta
function 9y,

L, x\, ry
5h(x)—ﬁ¢(z>¢(z>- (31)
In this paper we use the four-point delta function introduced by Peskin [19]
(3 =2l + /1 +4|r| —4r), 0< <1
(r)=q L5 -2 — /~T+ 12/ —47), 1<]r|<2 (32)
0, 2< |

On the other hand, the Lagrangian forcing is spread to the Eulerian grid
= pZF 0n(xXm — X7)As  Vx,, € g, (33)

The total amount of force is conserved by the above transformation

S F = pFAs (34)
i=1

Xml€&h
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In addition, the short-range repulsive force (Eq. (14)) is discretized as
n X - X"

* * 1% 1 J .

(Fc)i = E 5h(Xi—Xj)mAS7 l—O,l,z,...,N. (35)

j=1

3.2. The flow solver

3.2.1. Fractional step method
The N-S equations are discretized as

n

n+1
u = u +Nun+1 _ _Gpn+1/2 +ﬁ([lun+l +Llln) +f n7 (36)

Du! =0, (37)

where N, G, L and D are the linearized discrete convective operator, the discrete gradient operator, the discrete
Laplacian operator, and the discrete divergence operator, respectively. The N-S equations are solved by the
fractional step method on a staggered Cartesian grid. The velocity components and momentum forcing are
defined on the staggered grid, whereas the pressure is applied at the centers of cells. Fully implicit time
advancement is employed, with the Crank—Nicholson scheme being used for the discretization of the diffusion
and convection terms. Decoupling of the velocity and pressure is achieved by block LU decomposition in con-
junction with approximate factorization. Details of the approximate factorization can be found in Kim et al.
[27]. In summary, it can be written as

uw—u « =12 L * n n

A7 +Nu' = —Gp +2Re(Lu +Lu")+f", (38)
AtDGép = Du’*, (39)
' =u — AtGdp, (40)
pn+l/2 :pnfl/z _ Sp, (41)

where u* denotes the intermediate velocity. Due to the implicit treatment of the nonlinear convection terms,
further decoupling of the intermediate velocity components is made and finally a system of tridiagonal matri-
ces is formed instead of a large sparse matrix [27]. The momentum equation is then solved directly without
iteration, and the computational cost is reduced significantly. The pressure Poisson equation is solved by a
direct method using FFT or a multigrid method. The pressure is then used to correct the velocity field to sat-
isfy the continuity equation.

3.2.2. Summary of the numerical algorithm
The general process of the present numerical algorithm for simulating flexible filaments in a uniform flow
can be summarized as follows:

(1) At the nth time step, we know the fluid velocity field #” and the filament positions X" and X"~'. Inter-
polate the fluid velocity at the IB to obtain U}, by Eq. (30), and then calculate the Lagrangian interaction
force F' by Eq. (29).

(2) Spread the Lagrangian interaction force to the Eulerian grid by using Eq. (33). Solve Egs. (38)—(41) to
obtain the updated fluid velocity field and pressure field.

(3) Calculate the tension force at the intermediate time step 2 by Eq. (28). Solve Eq. (26) to obtain the
filament position at the new time step X" '. This ends one time step marching.

In the present simulations, the computational domain for fluid—structure interactions is a rectangle, and a
uniform flow moves from the top to the bottom of the computational domain, as shown in Fig. 1. Dirichlet
boundary conditions (u = U, v = 0) are used at the inflow and far-field boundaries, and a convective bound-
ary condition is used at the outflow.
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3.2.3. Validation

To validate the present N-S solver in combination with the feedback forcing scheme, we simulated a uni-
form flow over a transversely oscillating circular cylinder. Since in this system the motion of the IB is pre-
scribed, step (3) of the above numerical procedure is simply substituted by giving the known IB position at
the new time step. The cylinder is oscillating harmonically according to

v.(t) = A4, cos(2nf.t) (42)

where y. is the position of the cylinder center, 4,, is the oscillation amplitude, and f, is the oscillation fre-
quency. The characteristic length L, is set to be the cylinder diameter D, so the Reynolds number is defined
as Re = poU,.D/u. The computation is performed at Re = 185, A4,,/D = 0.2 as in Guilmineau and Queutey
[28], and two cases, namely f./fo = 0.9 and 1.1, are simulated for comparison, where f; is the natural shedding
frequency for a stationary cylinder (fo=0.19 for Re=185 [28]). The computational domain is
—50D < x < 50D and —50D < y < 50D, and the grid size is 513 x 283 in the streamwise (x) and transverse
() directions, respectively. Sixty grid points are uniformly distributed inside the cylinder in both the x- and
y-directions and the grid is stretched outside of the cylinder. It is well known [20,21] that the time step is re-
stricted by using the free constants o and f in Eq. (29). Lee [22] obtained the precise stability boundaries for
several time-advancing schemes. Based on the results of Lee, in this simulation we use o = —2 x 10°, = —10
and At =0.005 and the maximum CFL number is about 0.5.

Fig. 3 shows the time evolution of the drag and lift coefficients for f./f, = 0.9 and 1.1. For f,/fo =0.9
(Fig. 3(a)), the lift (drag) coefficient varies with time at a single frequency, once the vortex shedding is estab-
lished. For f./f; = 1.1 (Fig. 3(b)), however, a higher harmonic is seen, which corresponds to the phenomenon
of vortex switching [28]. The values of the mean drag coefficient (Cp), the rms drag and lift fluctuation coef-
ficients (C, and Cj, respectively), and the phase angle between Cp. and the vertical position of the cylinder (¢)
are presented in Table 1, which also lists the corresponding values from previous studies for comparison. We
can see that the present results agree well with those of Guilmineau and Queutey [28] and Kim and Choi [29].

b 2
e
o
s Of
U L
i | HiA
[ . | EC, . i .
% 50 100 150 200
t

Fig. 3. Time history of drag and lift coefficients at Re = 185, A./D = 0.2 and the values of f,/f, equal to: (a) 0.90; (b) 1.10.
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Table 1
Comparison of the mean drag coefficient (Cp), the rms drag and lift fluctuation coefficients (C, and C}, respectively), and the phase angle
between Cp and the vertical position of the cylinder (¢)

Cp Ch CL ¢
Sfolfo=10.9 Present 1.35 0.068 0.15 126.43
Guilmineau and Queutey [28] 1.33 0.077 0.19 128.11
Kim and Choi [29] 1.37 0.078 0.17 124.49
Sfolfo=1.1 Present 1.41 0.15 0.90 1.26
Guilmineau and Queutey [28] 1.36 0.15 0.87 0.00
Kim and Choi [29] 1.40 0.14 0.87 5.31

4. Results and discussion
4.1. A hanging filament without ambient fluid

The motion of a hanging filament without ambient fluid under a gravitational force, which is analogous to a
rope pendulum, can be simulated by Eqgs. (6) and (7) with the boundary conditions given by Egs. (8) and (9).
Thus steps (1) and (2) of the numerical algorithm are omitted for this problem. The filament is initially held
stationary at an angle from the vertical

X(s,0) = Xo + (L — s)(cosk,sink), 0X(s,0)/0¢t = (0,0), (43)

where k is a constant, and X, =(0,0). At t =0, it is released and starts swinging due to the gravity force.
Fig. 4 shows a superposition of the filament positions at successive times over half an oscillation period (a time
period of 0.8). This time period is marked as A to B in Fig. 5, which shows the time history of the free end
position of the filament. In these simulations, we use L =1, N =100, Fr = 10.0, and k = 0.1xn, and compare
systems with two different bending rigidities: without the bending force (y = 0), and with the bending force
included (y = 0.01). As shown in Fig. 4(a), the filament is totally flexible in the absence of the bending force
(y =0), and the free end rolls up obviously at the left side, a feature known as a ‘kick’ [15]. When the bending

0.2

04

0.6

0.8

Fig. 4. Superposition of the filament positions (from left to right) at successive times: (a) y = 0.0; (b) y = 0.01. The time step is 0.02 and the
time duration is 0.8.
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Fig. 5. Time history of the free end position of the filament.

force is included (y = 0.01), by contrast, the filament remains straighter during the pendulum motion and no
kick is observed (Fig. 4(b)). In Fig. 4(a), a kick is observed on the left side but not the right side. Interestingly,
during the whole time history, the kick behavior appears at the right extreme in the following sequence:
—++—++---, where ‘+’ denotes a kick and ‘-’ denotes no-kick, while the sequence at the left extreme is:
+—+4++—-+--.. Kick behavior is not observed at any time for y = 0.01. Despite this difference in kick behav-
ior, however, the time history of the free end position (Fig. 5) shows little difference between the two cases,
except at the extremes where the kick behavior occurs.

The filament is inextensible, so it is of interest to monitor the error of the inextensibility constraint intro-
duced during the simulation, which is defined as
0X oX 1.

&(t) = max

Os Os (44)

where |-| denotes the absolute value. As shown in Fig. 6, the magnitude of &(¢) is small, which means that the
inextensibility condition is well satisfied. Due to the kick behavior, which causes greater bending of the fila-
ment, the error is larger for the y = 0 system than for the y = 0.01 system.

For the case where the swing amplitude is small and the bending force is neglected, we used the perturba-
tion method to derive the analytical solution in series form (see Appendix). Twenty terms are summed up to
approximate the series (Eq. (61)) and the truncation error is less than 107>, We compared the results obtained
using the analytical solution with those from a simulation using y = 0, k = 0.017 with the other parameters the
same as in the simulations described above. As shown in Fig. 7, the free end position of the filament obtained
from the analytical solution (Eq. (61)) coincides with the numerical result with the inextensibility condition.
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Fig. 6. Time history of the length error of