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Abstract

An improved version of the immersed boundary (IB) method is developed for simulating flexible filaments in a uniform
flow. The proposed IB method is based on an efficient Navier–Stokes solver adopting the fractional step method and a
staggered Cartesian grid system. The fluid motion defined on an Eulerian grid and the filament motion defined on a
Lagrangian grid are independently solved and their interaction force is explicitly calculated using a feedback law. A direct
numerical method is developed to calculate the filament motion under the constraint of inextensibility. When applied to the
case of a swinging filament analogous to a rope pendulum, the proposed method gave results very similar to those of the
analytical solution derived using the perturbation method. For a flexible filament flapping in a uniform flow, the mecha-
nism by which small vortex processions are produced was investigated. The bistable property of the system was observed
by altering the filament length, and the effects of the boundary condition at the fixed end (simply supported or clamped)
were studied. For two side-by-side filaments in a uniform flow, both in-phase flapping and out-of-phase flapping were
reproduced in the present simulations. A repulsive force was included in the formulation to handle collisions between
the free ends of side-by-side filaments undergoing out-of-phase flapping.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Immersed boundary method; Fluid-structure interaction; Flexible filament; Inextensibility; Feedback forcing
1. Introduction

Systems involving flexible bodies interacting with a surrounding fluid flow are commonplace – for example
flapping flags and swimming fishes – and are becoming increasingly prevalent in biological engineering appli-
cations. Such phenomena are challenging to model numerically on account of their complex geometries and
freely moving boundaries, which give rise to complicated fluid dynamics. In these systems, the flexible body
acts on the surrounding fluid, forcing it to move with the moving boundary. On the other hand, the fluid exerts
forces on the flexible body through pressure differences and viscous shear stresses. Together, these interactions
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between the fluid and the flexible-body can give rise to self-sustained oscillations such as the flapping of a flag
[1–5].

Zhang et al. [1] visualized the motion of flexible filaments in a flowing soap film as a two-dimensional model
of the flag-in-the-wind problem. They found two distinct stable states for a single filament (see Fig. 1(a)): the
stretched-straight state and the self-sustained flapping state. For two side-by-side filaments (see Fig. 1(b)), four
dynamical states were observed, among which in-phase flapping and out-of-phase flapping can be selected by
altering the interfilament distance. This experiment inspired numerical simulations on the interaction between
flexible filaments and viscous fluid flow. Peskin and co-workers [6–8] simulated both a filament and two side-
by-side filaments for comparison with Zhang et al.’s experiment using a new version of the immersed bound-
ary (IB) method, which can handle the mass of the filament. They found that the filament mass plays a sig-
nificant role in the dynamics of flapping. Yu [9] extended the distributed Lagrangian multiplier/fictitious
domain formulation [10] to deal with the interactions between a fluid and a flexible body. Farnell et al. [11]
developed another method, in which the motion of a filament is formulated by Lagrange mechanics by regard-
ing the filament as an ‘N-tuple pendulum’ and the hydrodynamic force acting on the filament was approxi-
mated by the pressure difference across the filament. Systems of flexible fibers suspended in viscous flows,
which are important in the paper and pulp industries, were simulated numerically by Tornberg and Shelley
[12] and Qi [13]. In fact, previous results show that even a filament alone without ambient fluid flow (also
termed as a chain or string when the bending rigidity is neglected) gives rise to complex dynamics. Many inter-
esting studies have been made of filament dynamics, including theoretical, numerical and experimental works
[14–16].

Recently, the IB method for simulating interactions between fluids and structures has received much atten-
tion due to its greatly simplified grid generation requirements [17]. Specifically, by introducing a momentum
forcing into the Navier–Stokes (N–S) equations to mimic the no-slip condition, the N–S solvers based on a
Cartesian grid system can be easily applied to complex flow geometries without the need for a boundary-con-
forming grid. More importantly, it is not necessary to regenerate or deform the grid to account for moving
boundaries. The IB method developed by Peskin [18] turns out to be an efficient method for simulating
fluid–structure interactions, especially the interactions between fluids and flexible bodies, which are typically
encountered in biofluid mechanics [19]. The fluid motion is described by Eulerian variables defined on a fixed
Cartesian mesh, while the IB motion is described by Lagrangian variables defined on a freely moving mesh.
The Eulerian and Lagrangian variables are connected by a smoothed approximation of the Dirac delta func-
tion. The Eulerian velocities are interpolated on the IB and the Lagrangian forcing calculated on the IB
spreads to the Eulerian grid. For immersed elastic boundaries, the Lagrangian forcing is just the elastic force,
which can be derived by the principle of virtual work or a constitutive law such as Hooke’s law [19]. For rigid
boundaries, however, the constitutive law for elastic boundaries is not generally well posed. Hence, a feedback
control of the velocity along rigid boundaries was proposed by Goldstein et al. [20] and others [21,22]. Lai and
Peskin [23] used a stiff spring restoring force to force the IB to attach to the equilibrium or prescribed posi-
tions. A difference between the scheme of Goldstein and that of Lai and Peskin is that the boundary points are
exactly prescribed in the former scheme, but allowed to move slightly from their equilibrium positions in the
latter.
s

0(Q)

P

gravity
force 

filament

flow

x

y

ss′

Q′

P′

Q

P

0

gravity
force

flow

x

y-d/2 d/2

Fig. 1. Schematic diagram of the computational configuration and coordinate systems: (a) a filament in a uniform flow; (b) two side-by-
side filaments in a uniform flow.
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Peskin [19] showed that the equations of motion of an incompressible elastic material can be written in
the same form as those of the incompressible fluid; hence, the governing equations of the whole compu-
tational domain are the N–S equations with a momentum forcing, which are non-zero only near the
IB. To achieve massless (or neutrally buoyant) elastic boundaries, the only modification of the original
N–S solver required is the addition of the momentum forcing to the right hand side of the momentum
equations. However, more complications are encountered when the boundaries have mass since the density
is not uniform across the whole computational domain. Moreover, the efficient fast Fourier transformation
(FFT) method is no longer applicable for this system. Zhu and Peskin [6], in work aimed at simulating
flexible filaments in a fluid to compare the simulated behavior with the results of Zhang et al.’s experiment
[1], handled this problem by spreading the mass of the IB to the near Eulerian grid points in the same
manner as the momentum forcing. The multigrid method was used to solve the discretized equations,
and iterations were needed at each time step, which substantially increased the computation time. Kim
and Peskin [8] proposed a different formulation referred to as the penalty IB (pIB) method in order to
retain the use of the FFT. In the pIB method, the mass is added by introducing a twin boundary with
the needed mass that does not directly interact with the fluid but rather is connected to its twin massless
boundary by a stiff spring. In both papers, they treated the filament to be elastic and used a constant
stretching coefficient. To approximate the inextensibility of the filament, a large stretching coefficient
should be chosen in computation.

In the present study, an improved version of the IB method is proposed to handle the mass of a fila-
ment. In the proposed method, fluid motion is governed by the N–S equations and a momentum forcing is
added to induce the fluid to move at the same velocity as the IB. A flexible inextensible filament model is
described by another set of equations with an additional momentum forcing which is the result of the
interaction with the surrounding fluid. The Eulerian fluid motion and the Lagrangian IB motion are solved
independently and their interaction force is calculated explicitly using a feedback law [20]. The primary aim
is to efficiently simulate the interaction between flexible filaments and a viscous fluid flow. Although some
previous studies of such systems have been made using the IB method [6–8] and other methods [9,11],
many issues remain unresolved. The inextensibility condition of the filament was not strictly satisfied in
the IB method used in these previous works. Although a stable flapping motion was obtained, the small
vortex procession observed experimentally was not reproduced in the numerical studies. Moreover, the
effect of the boundary condition at the fixed end of the filament (simply supported or clamped) was not
fully explored. Finally, collisions between adjacent filaments were not considered. All of these issues are
resolved in the present method. In addition, the motion of a single filament without ambient fluid under
a gravitational force, analogous to a rope pendulum, is simulated and its analytical solution is derived for
validation.

2. Problem formulation

A schematic diagram of the computational configuration and coordinate systems is shown in Fig. 1. In
Fig. 1(a), a flexible filament with one end fixed and the other free is subjected to a uniform flow. The fixed
end of the filament coincides with the origin of the Eulerian coordinate system. For convenience, the Lagrang-
ian coordinate (s) along the filament starts at the free end P and ends at the fixed end Q. It should be pointed
out that, for the numerical simulation, it is equivalent for the Lagrangian coordinate to start at P or to start at
Q. The direction of the gravity force is denoted in Fig. 1. For the case of two side-by-side filaments, denoted by
PQ and P 0Q 0 in Fig. 1(b), the fixed ends are located at y = d/2 and �d/2, respectively. Each filament has its
own Lagrangian coordinate system.

The incompressible viscous fluid flow is governed by the N–S equations and the continuity equation
q0

ou

ot
þ u � ru

� �
¼ �rp þ lr2uþ f ; ð1Þ

r � u ¼ 0; ð2Þ
where u = (u,v) is the velocity vector, p is the pressure, q0 is the fluid density, l is the dynamic viscosity, and
f = (fx, fy) is the momentum forcing applied to enforce the no-slip boundary condition along the IB.
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The flexible filaments used in the present study are massive and inextensible. The governing equations for a
filament are written in a Lagrangian form. The motion equations are
q1

o2X

ot2
¼ o

os
T

oX

os

� �
� o2

os2
c
o2X

os2

� �
þ q1g � F þ Fc; ð3Þ
where s is the arclength, X = (X(s, t),Y(s, t)) is the position, T is the tension force along the filament axis, c is
the bending rigidity, F is the Lagrangian forcing exerted on the filament by the surrounding fluid, and Fc de-
notes the repulsive force between adjacent filaments in the case of side-by-side filaments. In Eq. (3), q1 denotes
the density difference between the filament and the surrounding fluid [9,24]. Since Eq. (3) is one-dimensional in
space, the actual filament line density is q1 + q0A, where A denotes the sectional area of the filament. We can
see that q1 = 0 represents the neutrally buoyant case. The inextensibility condition [12,14,16] is expressed by
oX

os
� oX

os
¼ 1: ð4Þ
Eqs. (1)–(4) can be non-dimensionalized by introducing the following characteristic scales: the reference fil-
ament length Lr for length, the far-field velocity U1 for velocity, Lr/U1 for time, q0U 2

1 for pressure p,
q0U 2

1=Lr for the momentum forcing f, q1U 2
1=Lr for the Lagrangian forcing F and the repulsive force Fc,

q1U 2
1 for the tension force T, and q1U 2

1L2
r for the bending rigidity c. For convenience, in the following,

the dimensionless quantities are written in the same form as their dimensional counterparts. Eqs. (1) and
(3) then become, respectively,
ou

ot
þ u � ru ¼ �rp þ 1

Re
r2uþ f ; ð5Þ

o2X

ot2
¼ o

os
T

oX

os

� �
� o2

os2
c
o2X

os2

� �
þ Fr

g

g
� F þ Fc; ð6Þ
where Re = q0U1Lr/l, Fr ¼ gLr=U 2
1, and g = jgj. Eqs. (2) and (4) keep the same forms after non-dimension-

alization. Note that different characteristic densities, q0 and q1, are used for Eqs. (1) and (3), respectively. This
difference should be accounted for when transforming between the Eulerian and Lagrangian forcings. For
comparison, the actual filament length L (after scaling with the reference value Lr) may be set to be different
from 1.

In the present study, the tension force T is determined by the constraint of inextensibility and is a function
of s and t, while the bending rigidity c is assumed to be constant. From Eqs. (4) and (6), the Poisson equation
for T is derived as
oX

os
� o2

os2
T

oX

os

� �
¼ 1

2

o2

ot2

oX

os
� oX

os

� �
� o2X

otos
� o

2X

ot os
� oX

os
� o

os
ðFb þ Fc � FÞ; ð7Þ
where Fb ¼ � o2

os2 ðco2X=os2Þ denotes the bending force. The first term on the right hand side of Eq. (7) is zero
theoretically. However, numerical errors of the inextensibility constraint are introduced in the computation
and will not be corrected if this term is dropped, as will be explained in detail in the next section. At the free
end (s = 0), we have
T ¼ 0;
o2X

os2
¼ ð0; 0Þ; o3X

os3
¼ ð0; 0Þ: ð8Þ
At the fixed end (s = L), two types of boundary conditions are considered. One is the simply supported con-
dition (denoted BC1 hereafter),
X ¼ XO;
o

2X

os2
¼ ð0; 0Þ: ð9Þ
The other is the clamped or build-in supported condition (BC2),
X ¼ XO;
oX

os
¼ ð�1; 0Þ: ð10Þ
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As shown in Fig. 1, XO is located at (0, 0) for a single filament, while XO = (0,d/2) and (0,�d/2) for two side-
by-side filaments, respectively.

The interaction force between the fluid and the IB can be calculated by the feedback law [20]
F ¼ a
Z t

0

ðU ib �UÞdt0 þ bðU ib �UÞ; ð11Þ
where a and b are large negative free constants, Uib is the fluid velocity obtained by interpolation at the IB, and
U is the velocity of the filament expressed by U = dX/dt. Eq. (11) implies that the adjacent fluid points are
linked with the IB by a set of identical stiff springs with damping.

The transformation between the Eulerian and Lagrangian variables can be realized by the Dirac delta func-
tion [19]. The interpolation of velocity is expressed as
U ibðs; tÞ ¼
Z

X
uðx; tÞdðXðs; tÞ � xÞdx: ð12Þ
Spreading of the Lagrangian forcing to the nearby grid points is expressed as
f ðx; tÞ ¼ q
Z

C
Fðs; tÞdðx� Xðs; tÞÞds; ð13Þ
where q = q1/(q0Lr) comes from non-dimensionalization. In Eq. (13), the Dirac delta function is two-dimen-
sional but there is only one integral ds. The present definition of q becomes q = q1/(q0A) if we use the integral
dV = (A/Lr)ds instead of ds. However, since the sectional area A is not definitely defined, q = q1/(q0Lr) is used
in the present study [25]. The combination of Eqs. (11) and (13) means that the velocities at the nearby grid
points are forced to move with the IB. The jump conditions in fluid stresses across the IB can be derived from
Eqs. (1) and (13) [26]. Peskin and co-workers [6–8] used a different formulation, in which the filament is
approximated by a band of delta function and the stretching and bending forces are spread out the nearby
grid points. In the present formulation, the motion of the IB can be solved independently and the inextensi-
bility condition can be satisfied.

In the present study, a strategy is introduced for handling collisions between two side-by-side filaments flap-
ping out of phase in a uniform flow. Due to the fluid lubrication, the two filaments do not actually collide but
rather interact repulsively via the intervening fluid when they are in close proximity. In the numerical simu-
lation, an artificial repulsive force is activated at close range, as proposed by Glowinski et al. [10]. For flexible
filaments, this short-range repulsive force can be formulated using the Dirac delta function
Fcðs; tÞ ¼
Z L

0

dðXðs; tÞ � X 0ðs0; tÞÞ X � X 0

jX � X 0j ds0; ð14Þ
where X(s, t) and X 0(s 0, t) are the position vectors along the two filaments, respectively. After discretization, the
forcing range is the support of the smoothed approximation of the Dirac delta function.

3. Numerical method

3.1. Discretization of the filament governing equations

3.1.1. The tension and bending forces

A staggered grid is used in the Lagrangian coordinate system, as shown in Fig. 2, with the tension force
defined on the interfaces and the other variables defined on the nodes. The indices start from the free end
(i = 0) and end at the fixed end (i = N). Let Ds, Dss and Dsss denote the difference approximation to the
0 1
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Fig. 2. Schematic diagram of the Lagrangian coordinate system for a flexible filament.
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first-, second- and third-order derivatives of the arclength s, respectively. Specifically, for an arbitrary variable
/,
D0
s / ¼ ð/ðsþ Ds=2Þ � /ðs� Ds=2ÞÞ=Ds; ð15Þ

Dþs / ¼ ð/ðsþ DsÞ � /ðsÞÞ=Ds; ð16Þ
D�s / ¼ ð/ðsÞ � /ðs� DsÞÞ=Ds ð17Þ
denote the center, downwind and upwind difference approximations, respectively. Thus, the second-order cen-
tral difference approximation is expressed as
Dþs D�s / ¼ ð/ðsþ DsÞ � 2/ðsÞ þ /ðs� DsÞÞ=Ds2: ð18Þ

The same rules apply for the time t.

The tension force term in Eq. (6) is discretized as
½DsðTDsXÞ�i ¼ ½D0
s ðTD0

s XÞ�i ¼
T iþ1=2ðD0

s XÞiþ1=2 � T i�1=2ðD0
s XÞi�1=2

Ds
; i ¼ 1; 2; . . . ;N � 1 ð19Þ
and the bending force term is discretized as
ðFbÞi ¼ �½Dþs D�s ðcDssXÞ�i ¼ �c
ðDssXÞiþ1 � 2ðDssXÞi þ ðDssXÞi�1

Ds2
; i ¼ 1; 2; . . . ;N � 1; ð20Þ
where
ðDssXÞi ¼
0; i ¼ 0;

ðDþs D�s X Þi; i ¼ 1; 2; . . . ;N � 1;

�
ð21Þ
and two boundary condition types (Eqs. (9) and (10)) at the fixed end are accounted for
ðDssXÞN ¼
0; simply supported;

½ð�1; 0Þ � ðD0
s XÞN�1=2�=0:5Ds; clamped;

(
ð22Þ
where (DsX)N = (�1,0) is used according to Eq. (10).
At the free end (i = 0), the tension and bending force terms in Eq. (6) are discretized using Eq. (8),

yielding
½DsðTDsXÞ�0 ¼
ðTDsXÞ1=2 � ðTDsXÞ0

Ds=2
¼

T 1=2ðD0
s XÞ1=2

Ds=2
; ð23Þ

ðFbÞ0 ¼ �c½Dþs ðDsssXÞ�0 ¼ �c
ðDsssXÞ1 � ðDsssXÞ0

Ds
¼ �c

ðDþs D�s XÞ2 � ðDþs D�s XÞ1
Ds2

: ð24Þ
At the fixed end (i = N), we have o2X/ot2 = 0 and Fc = 0, and hence
½DsðTDsXÞ�N � ½DssðcDssXÞ�N ¼ F � Fr
qg
g

� �
N

: ð25Þ
3.1.2. Time marching scheme

Now, the discretization of Eq. (6) can be summarized as
Xnþ1
i � 2Xn

i þ Xn�1
i

Dt2
¼ ½DsðT nþ1=2DsX

nþ1Þ�i þ ðF
�
bÞi þ Fr

g

g
� Fn

i þ ðFcÞ�i ; i ¼ 0; 1; 2; . . . ;N ; ð26Þ
where the superscript n denotes the nth time step, Dt denotes the time increment, and the boundary conditions
(Eqs. (23)–(25)) should be accounted for at i = 0 and i = N. At the fixed end, Eq. (25) is equivalent to
ðXnþ1

N � 2Xn
N þ Xn�1

N Þ=Dt2 ¼ 0. The bending force terms F�b and F�c are explicitly calculated in the form of
F�b ¼ Fbð2Xn � Xn�1Þ and F�c ¼ Fcð2Xn � Xn�1Þ, respectively. The tension force term is implicitly treated,
while Tn+1/2 is the tension force at the intermediate time step and is obtained by solving Eq. (7).
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The first term on the right hand side of Eq. (7) is discretized as
1

2
Dþt D�t ðD0

s Xn � D0
s XnÞ ¼ 1� 2ðD0

s X � D0
s XÞn þ ðD0

s X � D0
s XÞn�1

2Dt2
: ð27Þ
In the above equation, we used the inextensibility condition (DsX Æ DsX)n+1 = 1. The numerical errors intro-
duced in previous time steps, i.e. (DsX Æ DsX)n and (DsX Æ DsX)n�1, are penalized. The discretized form of
Eq. (7) can be written as
ðD0
s X�Þiþ1=2 � ½D0

s ðDsðT nþ1=2DsX
�ÞÞ�iþ1=2

¼ 1

2
Dþt D�t ðD0

s Xn � D0
s XnÞiþ1=2 � ðD0

s Un � D0
s UnÞiþ1=2 � ðD0

s X�Þiþ1=2 � ½D0
s ðF�b � Fn þ F�cÞ�iþ1=2;

i ¼ 0; 1; 2; . . . ;N � 1; ð28Þ
where X* = 2Xn � Xn�1, which is the solution of Eq. (26) by setting the right hand side to be zero. The dis-
cretization of the tension and bending forces (Eqs. (19) and (20)) are applied in Eq. (28), and the boundary
conditions (Eqs. (23)–(25)) are applied for i = 0 and i = N � 1. Solution of Eq. (28) gives the tension force
at the intermediate time step, Tn+1/2, which is then used as an inextensibility constraint to obtain Xn+1 from
Eq. (26). No iteration is needed for time advancement at each time step. In practice, the inextensibility con-
dition is well satisfied and use of the predicted position X* = 2Xn � Xn�1 instead of Xn reduces the error
further.

3.1.3. The interaction and repulsive forces

In Eqs. (26) and (28), the interaction force term is calculated explicitly, i.e.,
Fn
i ¼ a

Xn

j¼1

ððU ibÞji �U j
iÞdt0 þ bððU ibÞni �Un

i Þ; i ¼ 0; 1; 2; . . . ;N ; ð29Þ
where U j
i ¼ ðX j

i � X j�1
i Þ=Dt; j ¼ 1; 2; . . . ; n and
ðU ibÞji ¼
X

xml2gh

uj
mldhðX j

i � xmlÞh2; i ¼ 0; 1; 2; . . . ;N ; j ¼ 1; 2; . . . ; n: ð30Þ
In the above equation, h denotes the mesh size and, in the present simulations, a mesh of uniform size is dis-
tributed around the IB in the x- and y-directions, i.e. h = Dx = Dy. gh is the support of the smoothed delta
function dh
dhðxÞ ¼
1

h2
/

x
h

� �
/

y
h

� �
: ð31Þ
In this paper we use the four-point delta function introduced by Peskin [19]
/ðrÞ ¼

1
8
ð3� 2jrj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jrj � 4r2

p
Þ; 0 6 jrj < 1;

1
8
ð5� 2jrj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�7þ 12jrj � 4r2

p
Þ; 1 6 jrj < 2;

0; 2 6 jrj:

8><
>: ð32Þ
On the other hand, the Lagrangian forcing is spread to the Eulerian grid
f n
ml ¼ q

XN

i¼1

Fn
i dhðxml � Xn

i ÞDs 8xml 2 gh: ð33Þ
The total amount of force is conserved by the above transformation
X
xml2gh

f n
mlh

2 ¼
XN

i¼1

qFn
i Ds: ð34Þ
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In addition, the short-range repulsive force (Eq. (14)) is discretized as
ðFcÞ�i ¼
Xn

j¼1

dhðX�i � X 0�j Þ
X�i � X 0�j
jX�i � X 0�j j

Ds; i ¼ 0; 1; 2; . . . ;N : ð35Þ
3.2. The flow solver

3.2.1. Fractional step method

The N–S equations are discretized as
unþ1 � un

Dt
þ Nunþ1 ¼ �Gpnþ1=2 þ 1

2Re
ðLunþ1 þ LunÞ þ f n; ð36Þ

Dunþ1 ¼ 0; ð37Þ
where N, G, L and D are the linearized discrete convective operator, the discrete gradient operator, the discrete
Laplacian operator, and the discrete divergence operator, respectively. The N–S equations are solved by the
fractional step method on a staggered Cartesian grid. The velocity components and momentum forcing are
defined on the staggered grid, whereas the pressure is applied at the centers of cells. Fully implicit time
advancement is employed, with the Crank–Nicholson scheme being used for the discretization of the diffusion
and convection terms. Decoupling of the velocity and pressure is achieved by block LU decomposition in con-
junction with approximate factorization. Details of the approximate factorization can be found in Kim et al.
[27]. In summary, it can be written as
u� � un

Dt
þ Nu� ¼ �Gpn�1=2 þ 1

2Re
ðLu� þ LunÞ þ f n; ð38Þ

DtDGdp ¼ Du�; ð39Þ
unþ1 ¼ u� � DtGdp; ð40Þ
pnþ1=2 ¼ pn�1=2 � dp; ð41Þ
where u* denotes the intermediate velocity. Due to the implicit treatment of the nonlinear convection terms,
further decoupling of the intermediate velocity components is made and finally a system of tridiagonal matri-
ces is formed instead of a large sparse matrix [27]. The momentum equation is then solved directly without
iteration, and the computational cost is reduced significantly. The pressure Poisson equation is solved by a
direct method using FFT or a multigrid method. The pressure is then used to correct the velocity field to sat-
isfy the continuity equation.

3.2.2. Summary of the numerical algorithm

The general process of the present numerical algorithm for simulating flexible filaments in a uniform flow
can be summarized as follows:

(1) At the nth time step, we know the fluid velocity field un and the filament positions Xn and Xn�1. Inter-
polate the fluid velocity at the IB to obtain Un

ib by Eq. (30), and then calculate the Lagrangian interaction
force Fn by Eq. (29).

(2) Spread the Lagrangian interaction force to the Eulerian grid by using Eq. (33). Solve Eqs. (38)–(41) to
obtain the updated fluid velocity field and pressure field.

(3) Calculate the tension force at the intermediate time step Tn+1/2 by Eq. (28). Solve Eq. (26) to obtain the
filament position at the new time step Xn+1. This ends one time step marching.

In the present simulations, the computational domain for fluid–structure interactions is a rectangle, and a
uniform flow moves from the top to the bottom of the computational domain, as shown in Fig. 1. Dirichlet
boundary conditions (u = U1, v = 0) are used at the inflow and far-field boundaries, and a convective bound-
ary condition is used at the outflow.
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3.2.3. Validation

To validate the present N–S solver in combination with the feedback forcing scheme, we simulated a uni-
form flow over a transversely oscillating circular cylinder. Since in this system the motion of the IB is pre-
scribed, step (3) of the above numerical procedure is simply substituted by giving the known IB position at
the new time step. The cylinder is oscillating harmonically according to
ycðtÞ ¼ Am cosð2pfetÞ ð42Þ

where yc is the position of the cylinder center, Am is the oscillation amplitude, and fe is the oscillation fre-
quency. The characteristic length Lr is set to be the cylinder diameter D, so the Reynolds number is defined
as Re = q0U1D/l. The computation is performed at Re = 185, Am/D = 0.2 as in Guilmineau and Queutey
[28], and two cases, namely fe/f0 = 0.9 and 1.1, are simulated for comparison, where f0 is the natural shedding
frequency for a stationary cylinder (f0 = 0.19 for Re = 185 [28]). The computational domain is
�50D 6 x 6 50D and �50D 6 y 6 50D, and the grid size is 513 · 283 in the streamwise (x) and transverse
(y) directions, respectively. Sixty grid points are uniformly distributed inside the cylinder in both the x- and
y-directions and the grid is stretched outside of the cylinder. It is well known [20,21] that the time step is re-
stricted by using the free constants a and b in Eq. (29). Lee [22] obtained the precise stability boundaries for
several time-advancing schemes. Based on the results of Lee, in this simulation we use a = �2 · 103, b = �10
and Dt = 0.005 and the maximum CFL number is about 0.5.

Fig. 3 shows the time evolution of the drag and lift coefficients for fe/f0 = 0.9 and 1.1. For fe/f0 = 0.9
(Fig. 3(a)), the lift (drag) coefficient varies with time at a single frequency, once the vortex shedding is estab-
lished. For fe/f0 = 1.1 (Fig. 3(b)), however, a higher harmonic is seen, which corresponds to the phenomenon
of vortex switching [28]. The values of the mean drag coefficient (CD), the rms drag and lift fluctuation coef-
ficients (C0D and C0L, respectively), and the phase angle between CL and the vertical position of the cylinder (/)
are presented in Table 1, which also lists the corresponding values from previous studies for comparison. We
can see that the present results agree well with those of Guilmineau and Queutey [28] and Kim and Choi [29].
Fig. 3. Time history of drag and lift coefficients at Re = 185, Ae/D = 0.2 and the values of fe/fo equal to: (a) 0.90; (b) 1.10.



Table 1
Comparison of the mean drag coefficient (CD), the rms drag and lift fluctuation coefficients (C0D and C0L, respectively), and the phase angle
between CL and the vertical position of the cylinder (/)

CD C0D C0L /

fe/fo = 0.9 Present 1.35 0.068 0.15 126.43
Guilmineau and Queutey [28] 1.33 0.077 0.19 128.11
Kim and Choi [29] 1.37 0.078 0.17 124.49

fe/fo = 1.1 Present 1.41 0.15 0.90 1.26
Guilmineau and Queutey [28] 1.36 0.15 0.87 0.00
Kim and Choi [29] 1.40 0.14 0.87 5.31
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4. Results and discussion

4.1. A hanging filament without ambient fluid

The motion of a hanging filament without ambient fluid under a gravitational force, which is analogous to a
rope pendulum, can be simulated by Eqs. (6) and (7) with the boundary conditions given by Eqs. (8) and (9).
Thus steps (1) and (2) of the numerical algorithm are omitted for this problem. The filament is initially held
stationary at an angle from the vertical
Fig. 4.
time d
Xðs; 0Þ ¼ XO þ ðL� sÞðcos k; sin kÞ; oXðs; 0Þ=ot ¼ ð0; 0Þ; ð43Þ

where k is a constant, and XO = (0, 0). At t = 0, it is released and starts swinging due to the gravity force.
Fig. 4 shows a superposition of the filament positions at successive times over half an oscillation period (a time
period of 0.8). This time period is marked as A to B in Fig. 5, which shows the time history of the free end
position of the filament. In these simulations, we use L = 1, N = 100, Fr = 10.0, and k = 0.1p, and compare
systems with two different bending rigidities: without the bending force (c = 0), and with the bending force
included (c = 0.01). As shown in Fig. 4(a), the filament is totally flexible in the absence of the bending force
(c = 0), and the free end rolls up obviously at the left side, a feature known as a ‘kick’ [15]. When the bending
Y
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Superposition of the filament positions (from left to right) at successive times: (a) c = 0.0; (b) c = 0.01. The time step is 0.02 and the
uration is 0.8.



Fig. 5. Time history of the free end position of the filament.
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force is included (c = 0.01), by contrast, the filament remains straighter during the pendulum motion and no
kick is observed (Fig. 4(b)). In Fig. 4(a), a kick is observed on the left side but not the right side. Interestingly,
during the whole time history, the kick behavior appears at the right extreme in the following sequence:
�++�+ + � � �, where ‘+’ denotes a kick and ‘�’ denotes no-kick, while the sequence at the left extreme is:
+�+ +�+ � � �. Kick behavior is not observed at any time for c = 0.01. Despite this difference in kick behav-
ior, however, the time history of the free end position (Fig. 5) shows little difference between the two cases,
except at the extremes where the kick behavior occurs.

The filament is inextensible, so it is of interest to monitor the error of the inextensibility constraint intro-
duced during the simulation, which is defined as
eðtÞ ¼ max
06s6L

oX

os
� oX

os
� 1

����
����; ð44Þ
where jÆj denotes the absolute value. As shown in Fig. 6, the magnitude of e(t) is small, which means that the
inextensibility condition is well satisfied. Due to the kick behavior, which causes greater bending of the fila-
ment, the error is larger for the c = 0 system than for the c = 0.01 system.

For the case where the swing amplitude is small and the bending force is neglected, we used the perturba-
tion method to derive the analytical solution in series form (see Appendix). Twenty terms are summed up to
approximate the series (Eq. (61)) and the truncation error is less than 10�5. We compared the results obtained
using the analytical solution with those from a simulation using c = 0, k = 0.01p with the other parameters the
same as in the simulations described above. As shown in Fig. 7, the free end position of the filament obtained
from the analytical solution (Eq. (61)) coincides with the numerical result with the inextensibility condition.
Fig. 6. Time history of the length error of the filament.



Fig. 7. Comparison of the free end position of the filament between the present simulations and the analytical solution.
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We simulated this problem by using a constant filament stretching coefficient (KS) instead of the inexten-
sibility condition to calculate the tension force, i.e. T = KS(joX/osj � 1), as in Zhu and Peskin [6]. The tension
force term is treated implicitly, while the bending force term is treated explicitly. The result obtained by using
KS = 1000, c = 0 and k = 0.01p is shown in Fig. 7 for comparison. We can see the obvious deviation of the free
end position from those of the inextensibility condition and the analytical solution. If we choose a large KS, the
error is reduced but a small time step is required. Table 2 lists the maximum time step, the length error defined
in Eq. (44) and the analogous CFL number CA for various KS, where CA is defined as
Table
Compa
the ine

KS

102

103

104

Inexten
CA ¼ max
06s6L
ð
ffiffiffiffiffiffiffiffiffiffi
T=q1

p
Dt=DsÞ: ð45Þ
Here
ffiffiffiffiffiffiffiffiffiffi
T =q1

p
denotes the speed of waves traveling along the filament. We can see that a small stretching coef-

ficient (KS = 100) is not acceptable due to large length error (e = 0.38), while a too large value (KS = 10,000)
leads to a stiff system (maximum Dt = 0.0001 and CA = 0.044). Using the present formulation, i.e. the inex-
tensibility condition, the simulations were carried out at the same time steps as those of various KS, as shown
in Table 2. The length error is well controlled even for the largest time step used in this simulation (Dt = 0.001)
and the corresponding CA is 0.31. The computation is always stable for c = 0 using the present method. How-
ever, numerical instability is invoked when increasing c because the bending force term is calculated explicitly.
Table 3 displays the maximum time step, the length error and the analogous CFL number for various c and N.
It is shown that the maximum time step decreases as c increases or N increases. Since we only deal with very
soft filaments, i.e. with small c, the numerical instability limitation due to the bending force term is not
significant.

4.2. A flexible filament flapping in a uniform fluid flow

When a flexible filament is placed in a uniform flow, the computational domain is �2 6 x 6 6 and
�4 6 y 6 4, where these dimensions are scaled by Lr. Two different lengths (L = 1 and L = 0.5) are tested
2
rison of the length error (e) and the analogous CFL number (CA) of the extensible case at the maximum time step (Dt) with those of
xtensible case at the same time step

Dt e CA

1.0 · 10�3 0.38 0.42
3.1 · 10�4 0.040 0.14
1.0 · 10�4 0.0040 0.044

sible 1.0 · 10�3 2.0 · 10�8 0.31
3.1 · 10�4 3.3 · 10�10 0.097
1.0 · 10�4 4.4 · 10�12 0.031



Table 3
The maximum time step (Dt), the length error (e) and the analogous CFL number (CA) of the inextensible case for different bending
coefficient (c) and node number (N)

c Dt e CA

N = 64 10�4 8.1 · 10�3 1.6 · 10�6 1.59
10�3 2.3 · 10�3 1.3 · 10�8 0.45
10�2 7.3 · 10�4 1.1 · 10�10 0.14

N = 100 10�4 3.0 · 10�3 1.1 · 10�7 0.94
10�3 9.2 · 10�4 6.1 · 10�10 0.29
10�2 2.8 · 10�4 6.0 · 10�12 0.088
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in the present simulations, using a grid size of 513 · 251 in the streamwise and transverse directions, respec-
tively. The grid is uniformly distributed in the streamwise direction. In the transverse direction, however, the
grid is uniformly distributed in �1 6 y 6 1 but stretched outside. Other computational parameters are a = �
105, b = �102 and Dt = 0.0002.

For Re = 200 and c = 0.001, the instantaneous vorticity contours over a filament are shown in Fig. 8 at
four instants that approximately span a flapping period, t = 9.2, 10.0, 10.8 and 11.6. Other parameters
q = 1.5, Fr = 0.5, L = 1 and N = 64 are unchanged in this simulation. BC1 (Eq. (9)) is applied at the fixed
end and k = 0.1p for the initial condition (Eq. (43)), which is large enough to achieve a self-sustained flapping
state. Symmetric vortices are shed alternately from the flexible filament at the moment when it is most bent.
Fig. 9 shows the instantaneous vorticity contours at Re = 200 for a more flexible filament (c = 0.0001). This
filament bends to a greater degree at the free end compared to the c = 0.001 filament in Fig. 8. As a result, each
vortex shedding from the filament tends to be split into two, although the two small vortices do not completely
separate. For Re = 500 and c = 0.0001 (Fig. 10), two positive and two negative vortices are shed sequentially
from the filament. Again, in this system each vortex is split into two small vortices by the bending of the free
end. Interestingly, a previous study of the flow around a swimming eel also observed that two same-sign vor-
tices were shed per tail beat [30,31]. For Re = 1000 and c = 0.0001 (see Fig. 11), the vortex structure becomes
smaller, and the number of small vortices of each sign in one shedding period is increased to three. The trend
in the flow pattern with increasing Reynolds number is consistent with the experimental results of Zhang et al.
[1], which showed that a procession of small vortices is produced at high Reynolds number (about
t=9.2 t=10.0 t=10.8 t=11.6

Fig. 8. Instantaneous vorticity contours of a uniform flow over a filament at Re = 200 and c = 0.001 at four successive times. Other
parameters are q = 1.5, Fr = 0.5, L = 1, N = 64 and k = 0.1p. The position of the filament is denoted by the thick solid line. Positive
vorticity is indicated by black solid lines with increment 1.0, while negative vorticity is indicated by black dotted lines with increment �1.0.



t=9.2 t=10.0

t=10.8

t=11.6

Fig. 10. Instantaneous vorticity contours of a uniform flow over a filament at Re = 500 and c = 0.0001 at four successive times. Other
parameters are q = 1.5, Fr = 0.5, L = 1, N = 64 and k = 0.1p. The line patterns are explained in the caption of Fig. 8.

t=9.2 t=10.8

Fig. 9. Instantaneous vorticity contours of a uniform flow over a filament at

Re = 200 and c = 0.0001 at four successive times. Other
parameters are q = 1.5, Fr = 0.5, L = 1, N = 64 and k = 0.1p. The line patterns are explained in the caption of Fig. 8.
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Re = 20000). From Figs. 8–11, we can see that the production of a small vortex procession is a combined effect
of the Reynolds number and bending rigidity.

Fig. 12 shows the errors of the inextensibility constraint defined in Eq. (44) at Re = 200, c = 0.001, q = 1.5,
Fr = 0.5, L = 1, N = 64 and k = 0.1p. The numerical algorithm without the prediction step (Scheme 1), i.e.
using Xn directly instead of X* = 2Xn � Xn�1 in solving Eqs. (26) and (28), was compared with the present
one (Scheme 2). The error is reduced by two orders in magnitude by adopting the prediction step. Table 4
displays the maximum time step and the corresponding CFL number in our simulations for various a and
b used in the feedback forcing and different bending coefficient c, while other parameters remain unchanged.
For c = 0.0001, the maximum time step is determined by the stability from the use of large coefficient a and b
in the feedback forcing. For all a and b values listed in Table 4, the maximum time step is smaller than that of
the simulation of a filament alone without interaction (Dt = 0.0081 in Table 3). The stability analysis of the
feedback forcing [22] indicates that the limitation of the time step can be written as follows:

t=11.6
t=10.0
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t = 1 1 . 2
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�aDt2 � 2bDt < CT ; ð46Þ

where CT is a constant obtained from q, Ds, the type of smoothed delta function, and the time marching
scheme of the flow solver. By substituting the values of a, b and Dt in Table 4 into Eq. (46), we obtain
CT � 0.17. For c = 0.001, the maximum time step is also determined by a and b when �a P 104 and
�b P 102, which is the same as that of c = 0.0001. When a = �104 and b = �10, however, the maximum
time step is determined by the stability arising from the filament computation (Dt = 0.0023 in Tables 3
and 4).

Convergence test was carried out for various a, b and Dt, as shown in Fig. 13. The curves collapse well for
�a P 105 at both Dt = 0.0003 and Dt = 0.0006, but deviate slightly as time goes by for a = �104. b plays an
insignificant role in convergence. Convergence test for node number N was carried out for c = 0 since the
bending force varies with N significantly. As shown in Fig. 14, the difference among the curves of N = 56,
64 and 72 is negligible, while the curve of N = 48 shows a slight deviation from others.

To study the bistable property of the present system, we consider both L = 1 and L = 0.5. The node
numbers along the filament (N) for these systems are 64 and 32, respectively, and other parameters
used are Re = 300, c = 0.001, q = 1.0 and Fr = 0.5. The behaviors of filaments with BC1 and BC2 bound-
ary conditions at the fixed end (s = L) are compared. Note that the initial condition given by Eq. (43) is
not consistent with BC2 due to the value of o~X=os at the fixed end. Hence we use another initial condition
X i�1 ¼ X i þ ðDs cosðN � iÞa;Ds sinðN � iÞaÞ; U i�1 ¼ ð0; 0Þ; i ¼ N ;N � 1; . . . ; 1 ð47Þ

for both BC1 and BC2 in these simulations, where a is a small constant.

Fig. 15 shows the influence of filament length and boundary condition on the bistable property of the
system. For the short filament (L = 0.5; Fig. 15(a)), by setting a large initial disturbance a = 0.03 in Eq.
(47) (initially the free end is located at X0 = (0.43, 0.22)), self-sustained flapping eventually develops for
both BC1 and BC2, although the filament with BC2 requires a longer time to reach the equilibrium state.
The amplitude of oscillation at the equilibrium state is slightly smaller for BC2 than for BC1, while the
flapping frequency is slightly higher for BC2 because more energy is stored at the fixed end under this
boundary condition. On the other hand, by setting a small value of a = 0.01 (initially X0 = (0.49, 0.08)),
the initial disturbance decays gradually and the filament comes to rest at the stretched-straight state.
For a small initial disturbance, the motion is mostly limited to the region close to the free end; hence there
is little difference between BC1 and BC2 in Fig. 15(a) when the motion is decaying. The instantaneous vor-
ticity contours are shown in Fig. 16 for L = 0.5 with BC1. In these maps, the bistable property is clearly
seen with different initial disturbances. For a = 0.01 (Fig. 16(a)), the filament is in its stable stretched-
straight state, like a rigid plate, and the vorticity contour is symmetric about the filament. For a = 0.03
(Fig. 16(b)), however, the filament is in its self-sustained flapping state, and vortices are shed alternately.
. Time history of the free end position of the filament at Re = 200, c = 0.001, q = 1.5, Fr = 0.5, L = 1, N = 64 and k = 0.1p. Line 1:
= �106, b = �102, Dt = 0.0003; Line 2: - - -, a = �105, b = �102, Dt = 0.0003; Line 3: - - - -, a = �105, b = �102, Dt = 0.0006; Line
.., a = �104, b = �102, Dt = 0.0006; Line 5: - Æ - Æ -, a = �104, b = �101, Dt = 0.0006.



Fig. 14. Time history of the free end position of the filament at Re = 200, c = 0, q = 1.5, Fr = 0.5, L = 1 and k = 0.1p. Line 1: —–,
N = 72, Line 2: - - -, N = 64; Line 3: ......., N = 56; Line 4: - Æ - Æ - Æ, N = 48.

Fig. 15. Time history of the free end position of the filament with (a) L = 0.5 and N = 32; (b) L = 1.0 and N = 64. Other parameters are
c = 0.001, q = 1.0, Fr = 0.5 and Re = 300. BC1 is represented by a solid line and BC2 by a dashed line.
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For the longer filament (L = 1; Fig. 15(b)), a self-sustained flapping state quickly develops for both BC1

and BC2 with an initial disturbance a = 0.01 (initially X0 = (0.93, 0.31)), and slowly develops for a small
initial disturbance a = 0.001 (initially X0 = (0.999,0.032)). In all of our simulations of filaments of length
L = 1, the flapping state eventually developed no matter how small the initial disturbance. This is consis-
tent with the experimental finding that the stable stretched-straight state disappears and only the flapping
state remains if L is sufficiently large [1].



Fig. 16. Instantaneous vorticity contours of a uniform flow over a filament for (a) a = 0.01; (b) a = 0.03. The time is t = 60.0 and other
parameters are Re = 300, c = 0.001, q = 1.0, Fr = 0.5, L = 0.5 and N = 32. The line patterns are explained in the caption of Fig. 8.

Fig. 17. Time history of the error of the inextensibility constraint of the filament at Re = 150, c = 0.001, q = 1.0, Fr = 0.5, L = 0.5, N = 32
and a = 0.03.
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The errors of the inextensibility constraint in the L = 0.5 simulations are shown in Fig. 17. We see that the
errors are well controlled by the present method, remaining less than 10�9 for both BC1 and BC2. In addition,
the error under BC1 fluctuates over a smaller range than that under BC2 because the filament bends to a lesser
degree under BC1.

4.3. Two side-by-side flexible filaments flapping in a uniform fluid flow

In our simulations of two side-by-side flexible filaments, the computational domain and spatial grid distri-
bution are the same as for the single filament simulations described above. The filaments are initially parallel
to each other, as shown in Fig. 1(b). The motion of a filament becomes more complicated when another fil-
ament is nearby due to the interactions of the vortices shedding from the filaments as well as the interactions
between the filaments themselves. Experimental observations [1] indicate that when the distance d is suffi-
ciently small (d/L < 0.21 ± 0.04), the filaments flap in phase with each other, but when d is large enough
(d/L > 0.21), they switch to an out-of-phase state, flapping symmetrically about the centerline.

Figs. 18 and 19 show the vorticity contours of a uniform flow over two filaments separated by d = 0.1 and
0.3, respectively. BC1 is applied at the fixed ends of both filaments and Eq. (43) is selected as the initial con-
dition, where k = 0.1p. In this simulation, a = �105, b = �102 and Dt = 0.0003. Other parameters are



t=50.1

t=50.7t=51.3t=51.9

Fig. 18. Instantaneous vorticity contours of a uniform flow over two side-by-side filaments for d = 0.1 at four successive times. Other
parameters are Re = 300, c = 0.001, q = 1.5, Fr = 0.5, L = 1, N = 64 and k = 0.1p. The line patterns are explained in the caption of Fig. 8.

t=50.1

t=50.7

t=51.3

Fig. 19. Instantaneous vorticity contours of a uniform flow over two side-by-side filaments for d = 0.3 at four successive times. Other
parameters are Re = 300, c = 0.001, q = 1.5, Fr = 0.5, L = 1, N = 64 and k = 0.1p. The line patterns are explained in the caption of Fig. 8

.
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Re = 300, c = 0.001, q = 1.5, Fr = 0.5, L = 1 and N = 64. Four instants with constant interval are shown in
each figure. For d = 0.1 (Fig. 18), two positive and two negative vortices are shed alternately from the outside
of the two filaments in a manner similar to that observed for a single filament. The flapping of the two fila-
ments is always in phase, as is clear from the time history of their free end positions in Fig. 20(a). For d = 0.3
(Fig. 19), on the other hand, the flapping of the two filaments is out of phase and the vortices shedding from
the filaments are symmetric about the centerline. The vortex shedding on the outer sides of the filaments dom-
inates whereas the vortices shed in the fluid between the filaments decay quickly. The time history of the free
end positions of the two filaments (Fig. 20(b)) indicates that the filament flapping is in phase during the initial
stage but gradually changes, locking into an out-of-phase state at about t = 35. The short-range repulsive
force between the filaments (Eq. (14)) comes into play during out-of-phase flapping. As seen in Fig. 20(b),
the two free ends of the filaments do not actually touch each other, but leave a small spacing when the two
filaments collide. The time history of the error of the inextensibility constraint for d = 0.3, taken as the max-
imum value given by Eq. (44) for both filaments, is shown in Fig. 21. The error is generally less than 10�9,
indicating that the inextensibility condition is well satisfied.

5. Conclusions

We have developed an improved version of the IB method for simulating flexible filaments in a uniform
flow, based on an efficient N–S solver adopting the fractional step method and a staggered Cartesian grid
t=51.9



Fig. 20. Time history of the free end positions of both filaments for (a) d = 0.1; (b) d = 1.0. Other parameters are Re = 300, c = 0.001,
q = 1.5, Fr = 0.5, L = 0.3, N = 64 and k = 0.1p.

Fig. 21. Time history of the error of the inextensibility constraint of both filaments for d = 0.3. Other parameters are Re = 300, c = 0.001,
q = 1.5, Fr = 0.5, L = 1, N = 64 and k = 0.1p.
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system. In the present formulation, the fluid motion defined on a Eulerian grid and the filament motion
defined on a Lagrangian grid were solved independently and their interaction force was calculated explicitly
via a feedback law. The governing equations were non-dimensionalized and the transformation between the
Eulerian and Lagrangian variables was established using the Dirac delta function. A direct numerical method
was developed to calculate the filament motion under the inextensibility condition. The stability limitation
caused by the large stretching coefficient to approximate the inextensibility condition was relaxed by the pres-
ent algorithm. A swinging filament resembling a rope pendulum was simulated with and without a bending
force, and kicking was observed only for the flexible filament without a bending force. The error of the inex-
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tensibility constraint was well controlled. In the case of small amplitude swinging without the bending force,
the numerical result was in excellent agreement with the analytical solution derived by the perturbation
method. A flexible filament in a uniform flow was simulated at different Reynolds numbers and bending rigid-
ities. It was found that the maximum time step is determined by the stability arising from either the feedback
forcing or the filament itself. The results showed that the production of small vortex processions was a com-
bined effect of Reynolds number and bending rigidity. The bistable property of the system was observed for
the filament of length L = 0.5 for both simply supported and clamped conditions at the fixed end, whereas
only the stable flapping state was observed at L = 1.0. At the self-sustained flapping state, with the clamped
condition at the fixed end, the flapping amplitude was smaller and the frequency was larger than the corre-
sponding values with the simply-supported condition. Two side-by-side filaments in a uniform flow were then
simulated at different inter-distances. In-phase and out-of-phase flappings were observed at d = 0.1 and 0.3,
respectively. A short-range repulsive force, formulated using the Dirac delta function, was included in the for-
mulation; this force was activated in the case of out-of-phase flapping when the free ends of the two filaments
collided. The inextensibility condition was well satisfied in the present simulations.
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Appendix

By assuming c = 0, F = 0 and Fc = 0, the analytical solution of Eqs. (6) and (4) is derived here by the per-
turbation method for small-amplitude motion, subjected to the boundary conditions jX(0, t)j <1 and
X(L, t) = (0,0), and the initial conditions in Eq. (43). Let X0(s) = (L � s, 0) and T0(s) = Fr Æ s denote the resting
state. The perturbation to the resting state is expressed by
Xðs; tÞ ¼ X0ðsÞ þ eX1ðs; tÞ þ � � � ð48Þ

and
T ðs; tÞ ¼ T 0ðsÞ þ eT 1ðs; tÞ þ � � � ; ð49Þ

where e is a small positive number. Substituting Eq. (48) into Eq. (4) and neglecting the terms with e2, we ob-
tain X1(s, t) = 0. Thus Eq. (6) and the corresponding boundary and initial conditions become
o
2Y ðs; tÞ
ot2

¼ o

os
Fr � s oY ðs; tÞ

os

� �
; ð50Þ

Y ðL; tÞ ¼ 0; jY ð0; tÞj <1; ð51Þ

Y ðs; 0Þ ¼ kðL� sÞ; oY ðs; 0Þ
ot

¼ 0: ð52Þ
Using the method of separation of variables, a series solution of the above boundary value problem (Eqs. (50)
and (51)) has been found by Bailey [15]
Y ðs; tÞ ¼
X1
i¼1

J 0 zi

ffiffiffi
s
L

r� �
Ai cos

zit
2

ffiffiffiffiffi
Fr
L

r !
þ Bi sin

zit
2

ffiffiffiffiffi
Fr
L

r !" #
; ð53Þ
where J0 is the Bessel function of the first kind of order zero, zi is the ith positive root of J0(z), and Ai and Bi

are free constants which are determined by the initial conditions. From the second condition of Eq. (52), we
have Bi = 0, i = 1,2, . . .. The first condition in Eq. (52) is equivalent to
X1
i¼1

AiJ 0 zi

ffiffiffi
s
L

r� �
¼ kðL� sÞ: ð54Þ
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By multiplying both sides of Eq. (54) by J 0ðzj

ffiffiffiffiffiffiffi
s=L

p
Þ and then integrating with respect to s from 0 to L, we

obtain
X1
i¼1

Ai

Z L

0

J 0 zi

ffiffiffi
s
L

r� �
J 0 zj

ffiffiffi
s
L

r� �
ds ¼

Z L

0

kðL� sÞJ 0 zj

ffiffiffi
s
L

r� �
ds; j ¼ 1; 2; . . . ð55Þ
Then, by letting s = Lr2 and using the orthogonal property of J0, Eq. (55) becomes
Aj

Z 1

0

rJ 2
0ðzjrÞdr ¼ kL

Z 1

0

ðr � r3ÞJ 0ðzjrÞdr; j ¼ 1; 2; . . . ð56Þ
Together with the equalities
Z 1

0

rJ 2
0ðzjrÞdr ¼ 1

2
J 2

1ðzjÞ; ð57Þ
Z 1

0

rJ 0ðzjrÞdr ¼ J 1ðzjÞ
zj

; ð58Þ
Z 1

0

r3J 0ðzjrÞdr ¼ J 1ðzjÞ
zj
� 2J 2ðzjÞ

z2
j

; ð59Þ
where J1 and J2 are the Bessel functions of the first kind of order one and two, respectively. Eqs. (57) and (58)
can be solved by integration by parts. Thus
Aj ¼
4kL
z2

j

J 2ðzjÞ
J 2

1ðzjÞ
; j ¼ 1; 2; . . . ð60Þ
The series solution to Eqs. (50)–(52) is finally obtained
Y ðs; tÞ ¼
X1
i¼1

4kL
z2

i

J 2ðziÞ
J 2

1ðziÞ
J 0 zi

ffiffiffi
s
L

r� �
cos

zit
2

ffiffiffiffiffi
Fr
L

r !
: ð61Þ
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